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The thermal expansion coefficients and isobaric heat capacities of fluorite-type
compounds have been estimated using the Morse potential and the Debye
model. The Born repulsion parameters of various compounds, which are
necessary for determining the parameters of the Morse potential, have been
determined empirically for elements belonging to every period of the periodic
table. Using the parameters thus determined, the Debye temperature, the thermal
expansion coefficient, and the Gruneisen constant of fluorite-type compounds
have been calculated and then the isochoric and the isobaric heat capacities
have been calculated over a wide range of temperatures. The calculated thermal
expansion coefficients and isobaric heat capacities thus obtained are in good
agreement with experimental values except for the anomalous temperature
regions due to vacancy formation and phase transitions.

KEY WORDS: Debye model; Debye temperature; fluorite; Gruneisen con-
stant; heat capacity; Morse potential; oxides; thermal expansion; vacancy
formation.

1. INTRODUCTION

The properties required of materials have become increasingly sophisti-
cated, and combinations of various materials such as composites of metals
and ceramics, metal�ceramic bonding, and various coatings have been
developed to meet such demands. When such combinations of materials are
used at high temperatures, it is necessary for them to have almost the same
thermal expansion coefficients over the temperature range used. Thus,

249

0195-928X�00�0100-0249�18.00�0 � 2000 Plenum Publishing Corporation

1 Department of Science Education, Faculty of Education, Chiba University, 1-33 Yayoi-
Chou, Inage-Ku, Chiba 263-8522, Japan.



File: DISTL2 061502 . By:GC . Date:13:03:00 . Time:12:44 LOP8M. V8.B. Page 01:01
Codes: 3241 Signs: 2829 . Length: 44 pic 2 pts, 186 mm

estimation of the thermal expansion coefficients of materials has become
increasingly important to design a system composed of composite materials.
Not only for such a practical purpose but also from a theoretical point of
view, the estimation of the thermal expansion coefficient of materials is
important, because the thermal expansion coefficient is one of the most
important thermodynamic quantities. Theoretical calculations of the ther-
mal expansion coefficients of inorganic materials have been made [1�5] by
the use of potential models. These calculations, however, usually require
many fitting parameters or the coefficients of the potential to be determined
and are usually difficult to apply to other types of compounds.

Ruffa [6, 7] proposed a rather general method for the calculation of
thermal expansion coefficients, which can easily be applied to various
inorganic materials. He utilized the Morse potential and the Debye model
for the frequency distribution of the Morse oscillator. His method success-
fully explained the temperature dependence of the thermal expansion coef-
ficient, but some of the calculated values did not agree with measurements
due to inappropriate values of parameters used in the calculation.

Calculation of phase diagrams (CALPHAD method) has become
increasingly important not only from a practical viewpoint but also for
assessment of experimental thermodynamic data. Although the CALPHAD
method is a powerful technique to interpret thermodynamic phenomena,
the assessed thermodynamic data are still limited for users. For assessment
of experimental thermodynamic data, heat capacity data at high tempera-
tures are very important. However, accurate measurement of the heat
capacity at high temperatures is very difficult because of a rapid increase in
radiative heat transfer. Theoretical estimation of the isochoric heat capacity
is possible by using the Debye model. This model, however, is not so effec-
tive at high temperatures, since the heat capacity increases only slightly
above room temperature according to the model, while the experimental
heat capacity increases significantly above room temperature. Since the
measured heat capacity is an isobaric heat capacity, the dilational contribu-
tion to the heat capacity becomes important above room temperature. It is
thermodynamically expressed as [8]

Cd=Cp&Cv=(V;2�BT) T=#;Cv T (1)

where Cp and Cv are the isobaric and isochoric heat capacities, V is the
molar volume, ; is the volume thermal expansion coefficient, BT is the
isothermal bulk modulus, and # is the Gruneisen constant. The dilational
heat capacity has usually been estimated using an empirical equation such
as the Nernst�Lindemann equation. It would be more desirable, however,
if the dilational contribution can be properly estimated using Eq. (1).
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The estimation of the dilational heat capacity is also important to
analyze an observed heat capacity at high temperatures. In order to
separate the excess heat capacity such as due to vacancy formation, and
dielectric and magnetic contributions, estimation of the dilational contribu-
tions, as well as the vibrational contribution, is necessary.

The present author [9�11] has reported a method to estimate the
thermal expansion coefficient of inorganic compounds by using the Morse
potential and the Debye model. The method was originally developed by
Ruffa [6, 7] and was improved by the author by reevaluating the param-
eters used. The method has also been extended to estimate the dilational
and the isobaric heat capacity using Eq. (1) [12].

In this paper, the method to estimate the thermal expansion coefficient
and the isobaric heat capacity is presented using the Morse potential and
the Debye model and is applied to fluorite-type compounds.

2. THEORY

In order to estimate the thermal expansion coefficient and the isobaric
heat capacity, we utilize the Morse potential [6, 7]. The Morse potential
V(r) can be expressed as

V(r)=D[exp[&2a(r&r0)]&2 exp[&a(r&r0)]] (2)

where D is the depth of the potential, r is the interatomic separation, r0 is
the interatomic separation at the potential minimum, and a is the inverse
line width of the potential. The first term in the square bracket represents
repulsion and the second term represents attraction. The frequency & for
the Morse oscillator can be expressed as

&=(a�?)(D�2+)1�2 (3)

where + is the reduced mass of the oscillator. The vibrational energy En

and the mean atomic separation (rn) of the motion with the principal
quantum number n of this oscillator can be expressed as

En=h&(n+1�2)&[(h&)2�4D](n+1�2)2 (4)

(rn) =r0+(h&�2aD)(n+3�4)+O(&2) (5)

where h is the Planck constant and O(&2) is the quadratic vibrational term.
The statistical mean interatomic separation of the oscillator at temperature
T can be given, temporarily neglecting the quadratic vibrational term in
Eq. (5), as
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r� = :
�

m=0

(rm) exp(&Em �kT )< :
�

m=0

exp(&Em �kT ) (6)

=r0+(3h&�8aD)+(h&�2aD)[exp(h&�kT )&1]&1 (7)

where k is the Boltzmann constant. The second term in Eq. (7) represents
the deviation from the equilibrium position due to the zero-point vibration
and the third term is associated with thermal vibration. If we assume that
the vibrational frequency distribution of a crystal is described by the Debye
model, we can evaluate the thermal expansion of the crystal by averaging
the third term in Eq. (7) with respect to the vibrational frequency from
&=0 to &=&D (Debye frequency).

The mean interatomic separation at temperature T for the Morse
oscillator can be given, assuming the Debye model for the frequency dis-
tribution of the oscillator, as

(r� ) =
1

3N |
&D

0
f (&) d&

h&
2aD

[exp(h&�kT )&1]&1

=(3kT�2aD)(T�%D)3 f1(xD) (8)

f1(xD)=|
XD

0

x3 dx
exp(x)&1

, x=h&�kT, xD=h&D�kT=%D�T (9)

where %D is the Debye temperature. f (&) d& is the number of vibration
modes, and it is proportional to &2 d& according to the Debye model. Thus,
the linear thermal expansion coefficient of the crystal composed of 3N
Morse oscillators can be expressed as

:1(T )=
d

dT \(r� )
rn +=

3k
2arnD \ T

%D +
3

g1(xD) (10)

g1(xD)=|
xD

0

x4ex

(ex&1)2 dx (11)

where rn is the equilibrium interatomic separation of the oscillator and
Eq. (11) is known as the Debye function.

Equation (10) can be compared with the equation for the volume
thermal expansion coefficient ; derived from the known thermodynamic
relation [8]:

;=
#Cv

VBT

(12)
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where V, BT , and # are the same symbols as those in Eq. (1). The thermal
expansion coefficient has the term CV and its temperature dependence is
almost the same as CV , since the proportional coefficient is independent of
temperature in Eq. (10) and it varies only slightly with temperature in
Eq. (12).

Taking into account the higher term of the thermal oscillation in
Eq. (10) as

:2(T )=
2k2T

4arnD2 \ T
%D +

3

g2(xD) (13)

g2(xD)=|
xD

0

x5ex(1+ex)
(ex&1)3 dx (14)

Then the linear thermal expansion coefficient including the correction term
can be expressed as

:(T )=:1(T )+:2(T ) (15)

In order to apply these equations to various compounds we need to know
the parameters of the Morse potential: D, a, r0 , and the Debye tem-
perature, %D . For this purpose, Ruffa [6, 7] used the Born potential, which
has generally been used for ionic crystals as

VB(r)=&A�r+B�rm (16)

A=Ne2z2: (17)

where m, :, e, z, and N are the coefficient of Born repulsion, the Madelung
constant, the electric charge, the ion valence, and Avogadro's number,
respectively. It can be written for the equilibrium distance rn as

VB(rn)=&A�rn[1&(1�m)] (18)

In order to relate the Born potential and the Morse potential, Ruffa [6, 7]
used the following empirical equations:

D=0.1VB(rn) (19)

arn=(m+4)�5 (20)

the debye temperature, %D , can be obtained, using the following relation:

%D=(h�k) &D=(2ha�?k)(D�2+)1�2 (21)

where + is the reduced mass of the oscillator.
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Table I. The m Parameters for Halides mh and Oxides mo for each Row in the Periodic
Table Depending on the Existence of d- or f-Electrons for the Metal Elements of the Oxides

Row in the
periodic table mh mo (typical) mo (transition)

II 6.05 7.27 ��
III 8.59 8.07 ��
IV 11.36 9.67 8.41
V 12.21 9.60 8.96
VI 13.38 9.88 9.18
VII �� 10.12 9.35

Ruffa [6, 7] determined the Born constant, m, for alkali halides using
the compressibility data. However, as described in previous papers [9�11],
some of the thermal expansion coefficients calculated using the values of m
determined by Ruffa are very different from experimental values. For this
reason, the parameter m for alkali halides was reevaluated in the previous
study [9] by fitting the thermal expansion coefficients of alkali halides at
293 K to the experimental values. The thermal expansion coefficients of
alkaline-earth fluorides obtained from the calculation using the m param-
eter thus determined are in good agreement with the experimental ones. It
is not appropriate, however, to use the same m parameter for oxides,
because the bonding character of oxides is quite different from that of halides
and the m parameter should be different. The bonding character of oxides
would be different from oxide to oxide but can be classified in several groups
depending on the period of the periodic table and the existence of d- or
f-electrons for the metal elements of oxides. The m parameter for oxides
including actinide oxides was empirically determined so as to reproduce
experimental thermal expansion coefficients at 293 K of some oxides as
given in Table I [10, 11].

In order to estimate the dilational heat capacity, we need to estimate
the Gruneisen parameter #, which can be written as follows according to
Ruffa [13]:

#=5(5arn&4)�(9arn)[1+(kT�2D) F(T )]

=25m�[9(m+4)][1+(kT�2D) F(T )]

=25m�[9(m+4)][1+(kT�2D)

_[ f1(xD)&(15�2) x&3
D f (xD)(m+3)�(m+4)]] (22)
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where f (xD), f1(xD), xD , and F(T ) are expressed as

f (xD)=|
xD

0

x3

(ex&1)
dx, f1(xD)=|

xD

0

x4(1+ex)
(ex&1)2 , xD=%D �T

F(T )= f1(xD)�f (xD)&(15�2) x&3
D f (xD)(m+3)�(m+4)

Since the isochoric heat capacity can usually be regarded as the vibrational
term, we use the Debye equation:

CV=9R(T�%D)3 g1(xD) (23)

where R is the gas constant.
Using Eqs. (1), (15), (22), and (23), we can estimate the dilational

heat capacity and the isobaric heat capacity.

3. RESULTS AND DISCUSSION

The experimental [14] thermal expansion coefficient of CaF2 and
that calculated using Eq. (15) are shown in Fig. 1. It is shown that the
experimental thermal expansion coefficient of CaF2 is in excellent agree-
ment with the calculated value at low temperatures but becomes larger at
high temperatures. The excess part of the thermal expansion coefficient at
high temperatures as considered to be due to the vacancy formation as
described previously [9].

Fig. 1. Calculated and experimental [14] thermal expan-
sion coefficients of CaF2.
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The experimental [14] thermal expansion coefficient of BaF2 and that
calculated using Eq. (15) are shown in Fig. 2. The experimental thermal
expansion coefficient of BaF2 is in agreement with the calculated value
below 200 K but becomes larger above 400 K. the larger value of the
thermal expansion coefficient above 400 K is considered to be due to the
vacancy formation, similarly as in CaF2.

The experimental [14, 15] thermal expansion coefficient of CeO2 and
that calculated using Eq. (15) are shown in Fig. 3. The two experimental
thermal expansion coefficients are different at low temperatures. One
reason for this may be due to the choice of a function to fit the thermal
expansion data, since it is necessary to differentiate the regression function
in order to obtain the thermal expansion coefficient. The calculated thermal
expansion coefficient at low temperatures is smaller than the experimental
value by Taylor [15]. There exist two possibilities for this difference. One
is the larger estimation of the Debye temperature in the theoretical calcula-
tion, which comes from the larger value for the parameter m in Table I.
The other is the error due to the use of the improper regression function
at low temperatures to obtain the experimental thermal expansion coef-
ficient. The larger thermal expansion coefficient at high temperatures for
the experimental results is considered to be due to vacancy formation,
similarly as in CaF2.

Fig. 2. Calculated and experimental [14] thermal expansion coef-
ficients of BaF2.
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Fig. 3. Calculated and experimental thermal expansion
coefficients of CeO2.

The experimental [14�16] thermal expansion coefficient of ThO2 and
that calculated using Eq. (15) are shown in Fig. 4. The calculated thermal
expansion coefficient at low temperatures is in relatively good agreement
with the experimental value of Taylor [15]. The experimental thermal
expansion coefficient at low temperatures by TPRC [14] is considerably
larger than those of Taylor [15] and the calculated value. Since the tem-
perature dependence of the thermal expansion coefficient at low tempera-
tures should roughly obey the Debye function expressed by Eqs. (5) and
(7), the results of Taylor [15] are considered to be relatively more reliable
at low temperatures. The experimental data are in good agreement with the
calculated values between 500 and 1000 K but are larger above 1000 K. The
larger value of the thermal expansion coefficient at high temperatures is
considered to be due to vacancy formation, similarly as in CaF2.

The experimental [14�16] thermal expansion coefficient of UO2 are
shown in Fig. 5. The calculated thermal expansion coefficient at low tem-
peratures is smaller then the experimental value measured by Taylor [15].
One reason for this may be due to the fact that the regression data for the
thermal expansion used by Taylor were expressed by a quadratic function,
which is inappropriate at low temperatures. The experimental data [14,
15] are in good agreement with the calculated values between 300 and
1000 K except for that of Momin and Karkhanavala [16]. The experimental
data above 1000 K become considerably larger than the calculated values.
The larger values of the thermal expansion coefficient at high temperatures,
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Fig. 4. Calculated and experimental thermal expansion
coefficients of ThO2.

Fig. 5. Calculated and experimental thermal expansion
coefficients of UO2 .
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which are also seen in the heat capacity curve, have been attributed mainly
to Frenkel defects in the oxygen sublattice.

The experimental [14, 15, 17, 18] thermal expansion coefficient of
PuO2 and that calculated using Eq. (15) are shown in Fig. 6. The
calculated thermal expansion coefficient at low temperatures is slightly dif-
ferent from the experimental value measured by Taylor [15]. The reason
for this may be the same as that given for UO2. The calculated data are
in good agreement with the experimental results [14, 15, 17, 18] between
300 and 1000 K. The experimental data become considerably larger than
the calculated values above 1000 K for reasons similar to UO2.

The Gruneisen constants of CaF2 , ThO2 , and UO2 are calculated
using Eq. (22) and the results are shown versus temperature in Figs. 7, 8,
and 9, respectively. The calculated Gruneisen constant of CaF2 is in good
agreement with the experimental results of Bayley and Yates [19] and of
Batchelder and Simmons [20] above 100 K, although they are slightly
larger than those of White [21]. The calculated Gruneisen constant of
ThO2 is in excellent agreement with the experimental results [16] except
for low temperatures. These results indicate that the calculation procedure
using Eq. (22) is reasonable. The calculated Gruneisen constant of UO2 is
between 1.4 and 1.45 depending slightly on temperature, but the experi-
mental values obtained by Momin and Karkhanavala [16] show a larger
dependence on temperature ranging between 1.7 and 2.0, as shown in
Fig. 9. The theoretical Gruneisen constant of UO2 was also obtained as 1.86

Fig. 6. Calculated and experimental thermal expansion
coefficients of PuO2.
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Fig. 7. Calculated and experimental Gruneisen constants of
CaF2.

Fig. 8. Calculated and experimental [16] Gruneisen con-
stants of UO2.
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Fig. 9. Calculated and experimental [16] Gruneisen con-
stants of UO2.

and 1.28 by Singh and Pandy [22] and Singh et al. [23], respectively. The
reason for these differences may lie in the uncertainty of both the theoreti-
cal and the experimental values. The main possible source of error in the
calculations is the uncertainty of the parameters used in the calculations.
The main possible source of error in the experiments is the uncertainty of
the values of experimental quantities, such as Young's modulus, the
Poisson ratio, the thermal expansion, and the heat capacity used to obtain
the Gruneisen constant.

The isochoric and isobaric heat capacities of CaF2 are calculated using
Eqs. (1) and (21)�(23) and are shown in Fig. 10, where the experimental
heat capacities [24, 25] are also shown for comparison. It is shown that
the experimental heat capacity of CaF2 [24] is slightly larger than the
calculated value at low temperatures. This may be due to the larger estima-
tion of the Debye temperature in the calculation. The experimental heat
capacities are different at 300 K. The experimental heat capacity at 300 K
measured by Todd [24], which is close to the calculated value, is con-
sidered to be more reliable than that by Naylor [25], since the data of
Todd [24] were obtained by a direct heat capacity measurement. The
experimental heat capacity becomes larger than the calculated value at high
temperatures. The excess part at high temperatures is also seen in the
thermal expansion coefficient in Fig. 1, and this is attributed to vacancy
formation.
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Fig. 10. Calculated isochoric (Cv) and isobaric (Cp) heat
capacities and experimental heat capacities of CaF2.

Fig. 11. Calculated isochoric (Cv) and isobaric (Cp) heat
capacities and experimental heat capacities of MgF2.
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The isochoric and isobaric heat capacities of MgF2 are calculated using
Eqs. (1) and (21)�(23) and are shown in Fig. 11, where the experimental
heat capacities [24, 25] are also shown for comparison. It is shown that
the experimental heat capacity of MgF2 [24] is slightly larger than the
calculated value at low temperatures. The calculated isobaric heat capacity
becomes close to the experimental value at high temperatures.

The isochoric and isobaric heat capacities of ZrO2 are calculated using
Eqs. (1) and (21)�(23) and are shown in Fig. 12, where the experimental
heat capacities [26, 27] are also shown for comparison. It is shown that
the experimental heat capacity of ZrO2 [26] is slightly larger than the
calculated value at low temperatures. The calculated isobaric heat capacity
becomes close to the experimental value at high temperatures.

The isochoric and isobaric heat capacities of CeO2 are calculated using
Eqs. (1) and (21)�(23) and are shown in Fig. 13, where the experimental
heat capacities [28, 29] are also shown for comparison. It is shown that
the experimental heat capacity of CeO2 [28] is slightly larger than the
calculated value at low temperatures. The experimental heat capacity is
close to the calculated value around 300 K and becomes larger at high tem-
peratures. The excess part at high temperatures is considered to be due to
vacancy formation.

The isochoric and isobaric heat capacities of ThO2 , UO2 , and PuO2

are calculated using Eqs. (1) and (21)�(23) and are shown in Figs. 14, 15,
and 16, respectively. The experimental heat capacities of ThO2 [30], UO2

Fig. 12. Calculated isochoric (Cv) and isobaric (Cp) heat
capacities and experimental heat capacities of ZrO2.
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Fig. 13. Calculated isochoric (Cv) and isobaric (Cp) heat
capacities and experimental heat capacities of CeO2.

[31], and PuO2 [32] at low temperatures were obtained from direct
measurements. It is not possible, however, to obtain heat capacity data of
these compounds at high temperatures by direct measurements, since only
enthalpy data using drop calorimetry are available at high temperatures.
We have to differentiate the smoothed enthalpy data by using a proper
analytical or numerical function in order to obtain heat capacity values.
Therefore, the heat capacity results are dependent on the choice of the
function. The choice of the function is a matter of discussion [33�35],
especially for the case of UO2 , in which the so-called Bredig transition
exists at about 2610 K. In order to avoid this kind of complexity, we have
restricted the temperature range to below 2600 K and have used the func-
tion proposed by Fink [35]. The reason for the use of this function is that
the calculated value for UO2 using his function is on good agreement with
the direct heat capacity measurement by Gronvold et al. [36] at 1000 K.
The function of the heat capacity for ThO2 , UO2 , and PuO2 is shown in
Ref. 35 as

Cp=C1%2 exp(%�T )�[T (exp(%�T )&1]2

+2C2T+C3k(1+Ea�kT ) exp(&Ea �kT ) (24)

where % is the Einstein temperature, Ea is the activation energy, and C1 ,
C2 , and C3 are constants. Using the values given by Fink [35] for these
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Fig. 14. Calculated isochoric (Cv) and isobaric (Cp) heat
capacities and experimental heat capacities of ThO2.

Fig. 15. Calculated isochoric (Cv) and isobaric (Cp) heat
capacities and experimental heat capacities of UO2.

265Thermal Expansion Coefficients and Isobaric Heat Capacities



File: 840J 061518 . By:XX . Date:25:02:00 . Time:11:45 LOP8M. V8.B. Page 01:01
Codes: 2035 Signs: 1629 . Length: 44 pic 2 pts, 186 mm

Fig. 16. Calculated isochoric (Cv) and isobaric (Cp) heat
capacities and experimental heat capacities of PuO2.

constants, the heat capacities of ThO2 , UO2 , and PuO2 were calculated
between 300 and 2600 K and are plotted as the experimental values in
Figs. 14, 15, and 16, respectively.

As shown in Fig. 14, the experimental isobaric heat capacity of ThO2

is slightly larger than the calculated value below 200 K, approaching the
calculated value between 200 and 1200 K and then becoming larger at
higher temperatures. The smaller calculated heat capacity at low tempera-
tures may be due to the larger estimation of the Debye temperature in the
calculation. The larger experimental heat capacity above 1200 K may be
attributed to the excess heat capacity from the formation of Frenkel oxygen
defects, which was suggested by the neutron diffuse and inelastic scattering
experiments by Hatchings [37].

As shown in Fig. 15, the experimental heat capacity of UO2 [31]
shown a sharp transition at 30.44 K, which was considered to be of an
antiferromagnetic origin. It is also shown in Fig. 15 that the experimental
isobaric heat capacity is larger than the calculated value at low tempera-
tures, approaching the calculated value around 300 K and then becoming
increasingly larger at higher temperatures. The smaller calculated heat
capacity at low temperatures may be due to the larger estimation of the
Debye temperature in the calculation. The larger experimental heat capacity
compared with the calculated value at high temperatures is due to an
excess heat capacity, the origin of which has been a matter of discussion.
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The excess heat capacity has been attributed to the electronic excitation
and�or the formation of Frenkel oxygen defects. As was discussed using the
data by neutron diffuse and inelastic scattering experiments [37], the main
contribution of the excess heat capacity is possibly due to the formation
of Frenkel oxygen defects, especially at high temperatures, above 200 K.
There still exists a small excess heat capacity at lower temperatures, around
500 K and above, which may be due to the electronic excitation as dis-
cussed by Gronvold et al. [36] and Osborne et al. [38]. Therefore, it is
concluded that the excess heat capacity may be the effect of a small contribu-
tion of the electronic excitation and an increasingly larger contribution of the
formation of Frenkel oxygen defects as the temperature increases.

As shown in Fig. 16, the experimental isobaric heat capacity of PuO2

is slightly larger than the calculated value at low temperatures and then
becomes larger at higher temperatures. The excess heat capacity of PuO2

at higher temperatures is not as large as that of UO2 . The origin of the
excess heat capacity of PuO2 may also be due to the electronic excitation
and the formation of Frenkel oxygen defects, although these contributions
are not known quantitatively.

4. CONCLUSIONS

The thermal expansion coefficients, Gruneisen constants, and isobaric
heat capacities of fluorite-type compounds have been calculated semi
empirically using the Morse potential and the Debye model.

1. The calculated thermal expansion coefficients of CaF2 , BaF2 ,
ThO2 , UO2 , and PuO2 are in good agrement with the experimen-
tal results except for the excess part of the experimental results due
to vacancy formation at high temperatures.

2. The calculated Gruneisen constants of CaF2 and ThO2 are in
good agrement with the experimental results, although that of
UO2 is different from the experimental value, probably due to
both the uncertainty in the parameters used in the calculation and
the thermophysical property values used to derive the experimen-
tal result.

3. The calculated isobaric heat capacities of CaF2 , MgF2 , ZrO2 ,
CeO2 , ThO2 , UO2 , and PuO2 are in good agreement with the
experimental results, except for the anomalous heat capacities due
to vacancy formation and phase transitions.
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